Stabilising Urea Amine Nitrogen Increases Potato Tuber Yield by Increasing Chlorophyll Content, Reducing Shoot Growth Rate and Increasing Biomass Partitioning to Roots and Tubers

Potato Research 2019,Β doi:10.1007/s11540-019-09436-x


Wilkinson, S., Weston, A.K. & Marks, D.J.
Levity Crop Science Ltd., The Rural Business Centre, Myerscough College, Bilsborrow PR3 0RY, UK
Publish Date; 16 December 2019
Much of the nitrogen in crop fertiliser is degraded before acquisition. Technologies that stabilise urea-nitrogen minimise this. Degradation also specifically reduces the amount of ureic amine that many fertilisers initially contain, which is important because this nitrogen form has unique beneficial effects on plants. To investigate mechanisms whereby urea stabilisation increases potato tuber yield, we compare effects of foliar applications of chemically stabilised and non-stabilised urea against industry-standard fertiliser, on the physiology, form and yield of greenhouse-grown Casablanca under identical nitrogen supply. Stabilised urea is tested on Rooster and Shelford yields in Irish and British field trials. Stabilised amine nitrogen (SAN) increases Casablanca leaf relative chlorophyll content and initially reduces shoot growth rate. When harvested shortly after tuber initiation, SAN-treated plants have increased root to shoot weight ratios and we find tight negative correlations between shoot growth rate and root weight: large roots and slow shoot extension occur predominantly in SAN-treated plants. SAN increases ratios between initiation-stage tuber weight and (a) shoot length and (b) shoot growth rate. At a second harvest at mid-bulking, SAN increases high-grade Casablanca tuber yielding. At this later stage, yield correlates positively with shoot weight. In the field, SAN increases Rooster canopy greenness and marketable yields of both Rooster and Shelford. Yield improvements specific to this N form when stabilised are suggested to occur through increased photosynthesis and early-stage increases in root to shoot weight ratio. This phenotype then supports increased bulking-stage shoot growth and shoot-sourced resource for tuber growth. Stabilising urea amine induces high-yielding phenotypes with improved internal nitrogen utilisation efficiencies.
Nitrogen, Yield, Photosynthesis, Potato
Main Subjects
Potato, Plant Nutrition